If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2=135
We move all terms to the left:
h^2-(135)=0
a = 1; b = 0; c = -135;
Δ = b2-4ac
Δ = 02-4·1·(-135)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*1}=\frac{0-6\sqrt{15}}{2} =-\frac{6\sqrt{15}}{2} =-3\sqrt{15} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*1}=\frac{0+6\sqrt{15}}{2} =\frac{6\sqrt{15}}{2} =3\sqrt{15} $
| 45x-10=14x3 | | 9r-7r+3r=20 | | 56=4(2d+4)* | | x3=64125 | | 350=52t | | w+3w+1=9 | | 4a-4a+a=8 | | -8+9m-4-3m=6* | | x/4+20=-16 | | 17r+15=20r-15 | | 6r+4r=20 | | 3x-8-x=-30 | | x/4+20=-6 | | 16q+2q+2q=20 | | 7v-v+4=10 | | 5x+(-6)=2x+(-3) | | -9-4x-7x=-119 | | 102.3+90+90+x=360 | | 4p^2-2p^2=36 | | y2+4y-y2=16 | | 3s-s+2s-s-s=16 | | 17c-14c=18 | | 9x=13x-8 | | 8j-2j=12 | | 14u+u+2u-14u-u=6 | | X/3-5=2x/5 | | 8x=488 | | 9/4g-12=1/4g-4 | | 4x+104=148 | | z^2=17 | | 6t-3t+6t=9 | | r/3.3=3 |